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I. INTRODUCTION

During the past few years, considerable effort has been directed towards the solution

of nonlinear initial-boundary value problems in structural mechanics. The finite element

method is one of the more popular approaches employed to reduce continuum problems to

nonlinear algebraic, discrete problems. Finite element methodology is well documented in

the literature (e.g., see[23]) and attention here is devoted to procedures which may be

employed to solve the resulting nonlinear algebraic problem. The general class of problems

of interest include both material and geometric nonlinearities.

• iA brief review of the application of the finite element to problems in nonlinear con-

tinuum mechanics is presented in Section 2. The result is a large set of nonlinear algebraic

equations which must be solved for the state variables (e.g., displacements and stresses).

Newton's method is commonly employed to solve the nonlinear equations. In Section 3 dis-

cussion of Newton's method, including operation count estimates, and advantages and

disadvantages, is presented. In addition modified Newton's method is also discussed in this

section. In general, Newton's method possesses ideal characteristics of local convergence

and stability but is normally too expensive to employ for solving large finite element prob-

lems. On the other hand, modified Newton's method has desirable operation count esti-

mates for each iteration but becomes expensive to employ because of its low convergence

rate characteristics. Recently. Matthies and Strang 1101 have suggested that quasi-Newton

methods be used to solve nonlinear finite element problems. In Section 3.3 some of the

quasi-Newton's methods which have been used in optimization methods, such as Broyden's

method and the Broyden-Fletcer-Goldfarb-Shano (BFGS) method, are discussed and a dis-

cussion of the advantages and disadvantages for these methods is presented.

The use of iterative equation solvers as an inner loop for the Newton's method has

been suggested before and recently Eisenstat completed a study of the convergence proper-

ties of these methods. In section 4 the use of the Lanczos algorithm for iterative solution of
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linear system of equations is described. The relation of the Lanczos algorithm to the conju-

gate gradient method and the effect of preconditioning on the algorithm is demonstrated.

The preconditioned Lanczos algorithm is used to solve the linear system of equations aris-

ing at each iterate of Newton's method. This results in a technique where the rate of con-

vergence of the method can be varied from a linear to a quadratic convergence rate by

means of a specified tolerance. In section 5 a detailed description of the Newton-Lanczos

method is presented. The above methods are tested on various nonlinear problems In

structural mechanics and the results are tabulated.

.. A

-J
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2. THE FINITE ELEMENT METHOD FOR NONLINEAR PROBLEMS

Since its introduction, the Finite Element Method, FEM, has become one of the most

widely used techniques for solving various problems in continuum mechanics. The FEM

has established a systematic procedure for discretization of complex structures which results

in a large set of nonlinear equations.

The source of nonlinearities are of two types:

(a) material nonlinearity

(b) geometrical nonlinearity

.:1 - Addressed here are problems associated with both nonlinear constitutive relations and non-

linearities due io large displacements.

In the following section a summary of the formulation of problems in continuum

mechanics is presented. The resulting equations are then discretized using the Galerkin

method. The usual convention, that implies summation with respect to a repeated index in

a term, is adopted.

2.1. Equations of Kinematics

Consider a body with reference configuration at time t - 0, denoted by B0 that is

deformed by a motion to a current configuration B. Figure 2.1 illustrates this motion. Using

a common rectangular cartesian coordinate system, the Lagrangian description of the

motion can be expressed as

w - r (X,1) - X + u(Xu) (2.1.1)

where x is the current position at time i of a particle with position vector X at time t - 0

and u is the displacement the particle undergoes in this motion.

The deformation gradient of the motion is defined by
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F - I " + --X (2.1.2)

The matrix - is known as the displacement gradient. Thus, the strain tensor, at a point

in the current configuration, referred back to the initial configuration can be written as

E - 'h(FrF- I) (2.1.3)

Using equations 2.1.2 and 2.1.3 the strain tensor can be written directly in terms of the dis-

placement and the initial position vector

E - a(j +  a a2.1.4.a)

or in indicial notation

Eu- (uI,J + uj,I + UK.IUgcJ) (2.1.4.b)

where Em are components of the strain tensor E, and ul are components of displacement

vector u; ( )j, denotes partial differentiation with respect to the J-th component of the

position vector X.

For transient problems a statement of initial conditions is required. That is

u(X,O) - do(X) (2.1.5.a)

i(X,O) - vO(X) (2.1.S.b)

2.2. Momentum Balance

Equilibrium conditions between internal resisting forces and externally applied forces

must be satisfied, at least in the weak form, whether the displacements or strains are large

or small. The momentum balance equation is given by

DivP + b - p0"' (2.2.!.a)

or

P,,I + b, pO, (2.2.L.b)



where P1, are the components of the first Piola-Kirchhoff (unsymmetric) strew tensor P, b,

are components of the body force b, P0 is the density in the initial configuration, and a

superposed dot, ( ), denotes differentiation with respect to time.

A weak form of the momentum balance equations, equivalent to virtual work, may be con-

structed by multiplying 2.2.1.b by an arbitrary function W, integrating over the domain of

interest fl, using integration by parts on the stress term and setting the result equal to zero.

The result is
f (wP,, - Wb, + Wipiidfl - W,:,dr -0 (2.2.2)

where in addition to previously defined quantities, i, is a specified traction and rz is the

part of the boundary where traction is specified. For equation 2.1.2 to be valid, W must

vanish on r , that part of the boundary where displacements are specified (i.e., u, - ii; on

r ). The traction is related to stress through

- NP, (2.2.3)

where N, are direction cosines of the outward normal to r in the initial configuration.

The components of the first Piola-Kirchhoff stress tensor, Pli, is replaced by Su, the com-

ponents of the symmetric second Piola-Kirchhoff stress tensor, S, using the relation

P11 - SuF, (2.2.4)

where Fuj are the components of the deformation gradient matrix. This results in

f (WjSFj - Wb, + Wp,,,)dfl - W,;,dr -0 (2.2.5)

2.3. Constitutive Relation

In general the deformation gradient of the motion, the temperature and the tempera-

ture gradient determines the stress state. The effects of inelastic material behavior can be

modeled through internal variables.

For isothermal deformation the constitutive equation can be written as
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Po s jy (2.3.1)

S i where ' is the Helmholz free energy defined at ( X, t through the strain tensor and the

internal variables

*(X,t) - +'(E,a) (2.3.2)

The form of the constitutive relation stated above is currently under debate. A more

comprehensive discussion can be found in reference [14). In addition to the previously

defined quantities a is a vector of internal variables. Further, a constitutive relation of the

form

& - Y(Sa) (2.3.3)

is assumed for the internal variables. It is sometimes more convenient to express these

relations with strain rate as the dependent variable

E - CS + A. (2.3.4)

where C is the instantaneous elastic compliance tensor, and A is the inelastic compliance

tensor which depends on the stress state, the internal variables and the velocity gradient, L,

in such a way as to satisfy objectivity

A - A(S,a,L) (2.3.5)

This form of the model is most suitable for nonlinear viscoelastic or elastic/viscoplastic

materials. The constitutive equations are both nonlinear and rate dependent. Writting 2.3.4

in indicial notation

Eu - CIJKL S KL + Au(R)a(R) (2.3.6)

where R-1,2, ,N and N is the number of internal variables.

The weak form of this equation can similarly be obtained by multiplying 2.3.6 by an arbi-

trary function Vu, and integrating over the domain fl. This leads to
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f V11(E1 - CIJKLS1L AUj(asi(Rt))df - 0 (2.3.7)

where 6(v) is determined form equation 2.3.3.

2.4. Finite Element Discretlzatlon

In a finite element model, the domain fl is divided into elements ft. By sampling

the solution for the field variables, such as displacements or stresses, at a number of points

in the elements, known as nodes, an approximate solution can be constructed. When the

stresses are known explicitly in terms of the strains it is possible to choose the displace-

ments as the only independent variable and the solution to the nodal parameter can be

obtained using the weak form of the equilibrium equation, 2.2.5 . However, in cases when

the constitutive relation is more complex it is simpler to use a weak form of this equation,

2.3.7 , and use both stresses and displacements as primary variables.

In each element the approximations for u, and S,, which are CO-continuous and piecewise

constant ( C '-continuous ), respectively, over fl,, are in the form

u - TNA(X)uA(t) (2.4.1.a)
A

and

S - .Ma(X)S,(t) (2.4.1.b)

where NA (X) and M,(X) are shape functions over the domain fl, satisfying the CO and

C -1 continuity requirements cited above. The arbitrary weighting functions are also

approximated using these shape functions, as

W - N (X)WA (2.4.2.a)
A

and

V- LM(X)V. (2.4.2.b)
--



where WA and V5 are arbitrary nodal parameter. Using a temporal finite difference

scheme, such as Newmark's method 1131, the time derivatives in equations 2.2.5 and 2.3.7

can be removed.

The result of the application of the finite element method and the time-stepping pro-

cedure is a large set of nonlinear algebraic equations at each time step, ti, with nodal dis-

placements and stress quantities as the the unknowns. The dependence of these equations

on the stress quantities can be removed through static condensation at the element level

resulting in nodal displacements as the unknown parameters.

These equations can be written as

MO.) - 0 (2.4.3)

where x is a vector of the state variables, which consists of all the nodal displacements,

ui(tm) , and f is a vector function of x obtained by application of the Galerkin method to

equations 2.2.5 and 2.3.7.

IA
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Figure 2.1 Composition of Motion
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3. SOLUTION OF THE DISCRETE NONLINEAR EQUATIONS

Employing the finite element method and a time stepping procedure to discretize the

nonlinear structural mechanics problem leads to the large set of nonlinear algebraic equa-

tion given by 2.4.3 . Presented here, are a number of methods normally employed for the

solution of this equation.

The Taylor expansion for this, truncated to include only the linear terms can be written as

f(x + Ax) = f(x) + r(x)Ax (3.0.1)

where f - I- is a matrix with coefficients f',j given by

-- 8
exx

and Ax is a small change in x.

Almost all nonlinear procedures are based on this approximation.

3.1. Newton's Method

Using equation 3.0.1 Newton's method can be written as

f(Xk+i) = f(Xk) + Akdk (3.1.1)

where k is an iteration number, dk is a change in xk called the step direction, and At is the

Jacobian or tangent matrix of f defined by

A - ex J (3.1.2)

Newton's method consists of setting 3.1.1 equal to zero, solving for dt from

Akd, - -f(x,) (3.1.2)

and setting

xk+t - xI + dk (3.1.3)



Newton's method requires the initial guess x0 to be in a domain D, called the domain of

attraction, such that convergence to the exact solution, x* in D, of equation 2.4.3 does

occur. Furthermore, f must be differentiable in D and the tangent matrix must be non-

singular at the solution. In practice it is often desirable to modify 3.1.3 to

xk+1 - Xk + skdk (3.1.4)
A

where s, is a scalar step size which is used to enhance stability of the algorithm. The value

of s, is determined from a line search as described in the following section.

The algorithm for implementing Newton's method consists of choosing a good initial

guess so and repeat following steps for k - 0,1,2, • until convergence is achieved:

(1) given xk compute fxA)

(2) compute the tangent matrix Ak

(3) solve Akdk - -f(X,) for d,

(4) compute sk from a line search

(5) update Xk+, - X, + Skdk

(6) test for convergence and terminate if converged

There are several procedures which may be used to terminate the iteration.

These include:

(a) WOO,,) < 4,,'nsx1lf(Xdl

(b) idkll < *2maxlld,II

(c) jid'fOxt)l < e msxjd,'f(xj)j

where e, are small positive constants. In this work method (a) was used. Method (c) is only

applicable for symmetric positive definite Jacobians.
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3.1.1. Line Search for Newton's Method

In the above presentation a step size, sk, has been included to improve the stability of

- Newton's method. The magnitude of Sk is obtained in such a way as to minimize a norm of

the residual, f(Xk). A common procedure used, is to solve the following nonlinear scalar

equation for sk

G(s) - drf(Xk+skdk) - 0 (3.1.5)

It is important to note that equation 3.1.5 need not be solved accurately since Xk+1 is itself

only an approximation and also, in general, the additional function evaluations are costly in

finite element analyses.

In fact, when possible, the line search should be omitted when Xk is close to a solution.

3.1.2. Operation Counts for Newton's Method

For purposes of subsequent cost comparisons, operation counts for Newton's method

are estimated to indicate the relative efforts needed in each step. For an n-dimensional x,

the operation count estimates are:

(a) computation of f(Xk) 0(n)

(b) computation of Ak 0(n1)

(c) direct solution of equations

triangular decomposition of Ak 0(n)

forward reduction/backsubstitution O(W2 )

(d) line search 0(n)

(e) update of solution 0(n)

(f) convergence test O(n)

While order of magnitude estimates are given, substantial differences in real effort exist

between, for example (a) and (d). The majority of effort is associated with steps (a) to (d),

and only comparisons between these steps are meaningful. There is an order of magnitude
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increase in step (b) over step (a) or in step (c) over step (b). It is important to note that

these estimates are somewhat problem dependent, for example step (a) can cost as much as

step (b). Consequently, considerable efficiency can be achieved by eliminating or reducing

the number of expensive steps required.

3.1.3. Convergence of Newton's Method

The rate of convergence of an algorithm will determine how fast the iteration Xk

approaches a solution x*. An acceptable algorithm must be at least linearly convergent 131;

that is, given a solution x*, then

IIXkN - 1*11 -< allk - 1.11 (3.1.6)

where a is a positive constant less than unity. Although 3.1.6 ensures that the error norm is

reduced by the factor a in each iteration, to be competitive it is generally acknowledged

that an algorithm must have better than linear convergence. When Newton's method has

continuously differentiable f and a solution x in D, then the error norm satisfies the

stronger condition

llX,+, - X'11 < allx - X'II°  (3.1.7)

where q is a positive scalar such that I < q < 2 . This is called super-linear convergence.

In addition, for cases where f is twice differentiable in the neighborhood of x*, with non-

singular Jacobian, Newton's method is quadratically convergent with q - 2.

For finite elment applications, Newton's method will almost always have at least super-

linear convergence, and most problems are such that quadratic convergnce will be

achieved.

3.1.4. Advantages and Disadvantages of Newton's Method

Newton's method has at least two very desirable properties:
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(i) Any xk in D results in an Xk+1 in D; consequently, the method is stable and conver-

gent once an iterate is in D.

(ii) The method possesses at least super-linear convergence and often quadratic conver-
A gence [31.

On the negative side, we note that:

(i) If D is small, then the initial approximation may have to be very close to x" to get

inside D. We do not know when z0 is in D.

(ii) The triangular decomposition of the Jacobian matrix is very costly in large finite ele-

ment problems.

The requirement of a good initial guess may be avoided in part by using line searches

and, for quasi-static problems, an evolution of the load application 1231. In the sequel we

address the possibility of reducing computational factorizations of the tangent matrix.

3.2. Modified Newton's Method

For large systems of equations, the main cost in Newton's method is the triangular

decomposition of the Jacobian matrix. The use of a previously factored Jacobian is often

advocated in place of the current tangent matrix. The algorithm is given as, for

k-O,1,2, repeat

(1) given Xk compute f(xk)

(2) solve A,dt - -f(xk), whereA, is the tangent matrix at step i < k

(3) compute sh from a line search

(4) update x,1 - xk + Skdk

(5) test for convergence and terminate if converged

Comparing this algorithm with that of Newton's method, we observe that the O(nZ) opera-

tions to compute the Jacobian matrix and the O(n) operations to compute the triangular

i .. .. .. .. ..... .. . . . . .. . .. . . ..
J ".... . . . .. . . . . . . . . .... ' l. . . ... -- ' .. . . .. . . . .... . -. . . . -

'
- ' 1 1 . _ . .
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decomposition are avoided. The algorithm still requires O(n2) operations to perform a

resolution using the triangular factors of A,. However, these savings are achieved at the

expense of the convergence rate since modified Newton's method only converges linearly,

as given by equation 3.1.6. There exists some number of iterations p such that computation

of a new Jacobian matrix will make the modified Newton's method more efficient. Unfor-

tunately, the value of p depends on the degree of nonlinearity of the problem and cannot

be estimated easily.

3.3. Quads-Newton Methods

Quasi-Newton methods are a generalization of the one-dimensional secant method to

the n-dimensional problem (e.g.,see [l1 and [121). In the secant method, an approxima-

tion to the tangent matrix, Ak, is used at each iteration. This concept is applied in multi-

dimensions and a simple updating is deduced to compute the new Ak from the previous

value of Ak-t. The staring matrix AO is normally taken as f(xo), however, other choices are

possible such as the finite difference approximations 131. The convergence rate for all prac-

tical quasi-Newton methods is super-linear, and the number of numerical operations for

each iteration is 0 (n ).

To deduce the equation for the updating of the Jacobian, known as the secant equa-

tion, a linear backward Taylor formula at step k is used.

f(Xk) = f(xk-I) - r(Xk)(Xk - Xk-I) (3.3.1)

This equation can be rearranged to obtain the approximate Jacobian Ak

Akdk-I - bk-I (3.3.2)

where

dk- k- 1
k-I (3.3.3)

and
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bk-I- t('&) - f(x,-) (3.3.4)

The values in 3.3.3 and 3.3.4 must be computed to perform the step

Akd, - -f(xk) (3.3.5)

Equation 3.3.2 is called the quasi-Newton equation, which must be satisfied by At. In a one

dimensional problem, this equation is sufficient to determine Ak completely, however, for

multi-dimensional problems additional constraints are required to obtain Ak. The construc-

tion of the approximate Jacobian depends, to a large extend, on the choices for these con-

straints. The work of Broyden and Broyden-Pletcher-Goldferb-Shano, BFGS, are but two of

the many possibilities for constructing At.

3.3.1. Broyden's Method

In 1965 Broyden proposed a method for the approximate specification of the tangent

matrix by a simple update of the previous value. Broyden assumed that Ak does not differ

from Ak-t when acting on any vector orthogonal to dk-. accordingly

Akz - Ak-z (3.3.6)

for

zrd-,_ - 0

These equations provide an update relation for Ak and, together with equation 3.3.2, allows

Ak to be determined uniquely. Thus, Broyden's method is given by

Ak - Ak...I + (bk-I - Ak.-ldk-i)d-I(.Ak -A~e-I + ' jdk-11(.37

Post-multiplying 3.3.7 by dk-I and z results in equations 3.3.6 and 3.3.2, respectively,

thus demonstrating the applicability of 3.3.7 . This equation can be written in the computa-

tionally more attractive form, using equation 3.3.4
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* f'(x&)d&T,
Ak Ak-I + -- | (3.3.8)

Broyden's method is super-linearly convergent [31. Given an initial x0 and Ao and

using the above equations the quasi-Newton step can be performed. The algorithm is ident-

ical to that for Newton's method, except the computation of the Jacobian is replaced by

equation 3.3.8. The factorization of Ak at each step is still required; consequently, it Is best

to directly update the inverse of At-I to obtain the inverse of Ak. This will eliminate the

need to compute the triangular decomposition of At and therefore will result in an algo-

rithm with O(n') operations in each step.

13.3.2. Computation of the Inverse Matrix

The inverse of matrices defined similar to 3.3.8 may be written as

(A + vwr)-' - A -' - LA-IvwrA-I (3.3.9)

where

0 - I + wrA-Av

if we let Ht be the inverse of Ak, Broyden's method for the update of the inverse becomes

~(C-i - ]Hk-ibk-I)dk-,Hk-I

Hk - Hk-I + (1-I-H t lt k-, (3.3.10)

* provided dkr'LHA..Ibk_ is nonzero. Broyden's method may be implemented as

d, - -Hkf(Ik) (3.3.11)

3.3.3. Convergence of Quasi-Newton Method

Convergence properties of quasi-Newton method are discussed by Dennis and More

in 131. In this study they restate an earlier result that an iterative method is super-linearly

convergent if
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lI A,, - r(x)(x,+1 - x,,)II (..2
lia k -(*]X~ k1 0 (3.3.12)

,k-- 1X+1- 1F

if Ak converges to f(x ), as for Newton's method where A, equals (x,), then conver-

gence is always super-linear. However, the important result of 3.3.12 is that when A, only

converges to r(x ) in the direction d,. convergence is also super-linear. Both the Droyden

and the BFGS quasi-Newton method satisfy 3.3.12 for continuously differentiable f and

thus are super-linearly convergent.

3.3.4. Methods for Symmetric Positive Definite Jacoblans

Brodlie, Gourlay and Greenstadt have shown that certain rank-one and rank-two

corrections to symmetric positive definite matrices may be conveniently expressed in the

product form (1]

H, - (I + wkvkl)Hk-(l + vkwk) (3.3.13)

This form has the important property that successive inverse tangent matrices remain sym-

metric. In [101 the algorithm is related to the BFGS algorithm, which gives

w dTr k-b- (3.3.14)

and

v- f(xk,-) I dT-f(y*) Jj - f(x ) (3.3.15)

The computational steps for implementing the BFGS method are very straight- for-

ward and consist of solving 3.3.11 with following steps:

(1) for each k compute f(x,) and z, - - (! + vtwk)f(xk)

(2) solve Hilhu, - Ek

(3) compute d, - (1+ wOv)u,
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(4) if required, compute a line search for sk

(5) update 14,+ - xk + skdk

(6) check convergence

It should be noted that Hi]k- may result from a previous BFGS update. Thus, step (1) and

(3) may require several updates before the resolve step is performed. Furthermore, this

form of the algorithm is strictly limited to positive definite tangent matrices. Indefinite

matrices resulting from Lagrange multiplier constraint, such as contact problems, can not

be considered by present implementation of BFGS and therefore an alternative implementa-

tion is required.
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4. LANCZOS ALGORITHM FOR SOLUTION OF THE LINEARIZED PROBLEM

The discretization of nonlinear structural mechanics problems and linearization of the

resulting nonlinear algebraic equations for application of a Newton type methods normally

will lead to a symmetric system of linear equations. These equations may be written as

Ax - b (4.0.1)

Presently, most nonlinear procedures employ a direct method such as Gaussian elimi-

nation for the solution of this system of equations. In this section an alternative solution

technique is presented.

In most applications A will be sparse, and an elegant way to make use of sparsity is to

employ A solely as a linear operator which computes the product Av for a given vector v.

, This has the added advantage that A need not be known explicitly but only a means of

computing the matrix vector product is required.

For years, iterative methods have been used for the solution of large systems of equa-

tions. The Conjugate Gradient method is one such technique introduced by Hestenes and

Stiefel 15J. This method, in theory, requires at most n steps to obtain the exact solution of

4.0 1 and was accepted because of this termination property. In the same year Lanczos pub-

lished his method of Minimized Iteration which wis initially introduced for computing the

eigen pairs of a large symmetric matrix. Lanczc(s -.it, Householder [6) pointed out the inti-

mate connection between the two approaches.

These methods have several attractive features in common. There is no need for A to have

further special properties, such as banded form, no acceleration parameters have to be

estimated, and the storage requirements are only a few n-vectors in addition to the store

needs of A.

In finite element applications the matrix vector multiplication can be performed at the

element level. This will result in considerable saving in storage at the expense of some
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additional multiplications.

4.1. The Lanczos Algorithm

For certain applications of the finite element method, especially in nonlinear prob-

lems, it is usual io have on hand an initial approximation x" to the true solution of 4.0.1 .

The problem is now to find a correction xC to be added to x'. Then

Axc - r0 (4.1.1)

where

ro- b - Ax" (4.1.2)

Lanczos algorithm may be described very simply as a process of constructing the weak form

of equation 4.0.1 from a very special subspace. The subspace under consideration is gen-

erated from the set of j vectors ( ro, Ar 0 , , AJ-'rO ), known to mathematicians as

the Krylov subspace (181. To construct the weak form it would be simpler if an orthonor-

meal set of vectors, say (q bq2, " ,q,), were available. This can be achieved by applying

Gram-Schmidt orthogonalization to the Krylov vectors. Initially, this appears to be an

expensive way of obtaining an orthonormal base vectors, however this procesa o" be

simplified when the following two facts are used:

(i) The use of Aqs and Air0, for orthogonalization against the previous q vectors and

normalization of the resulting vector, leads to the same vector qj+t.

(ii) The vector Aq, is orthogonal to q1,q2, • • , ,q-2.

These results are demonstrated in Appendix A. A more complete explanation is presented

in 1181. Therefor it is sufficient to orthogonalize Aqs against qj- and qj to obtain the next

orthogonal vector.

ri -- j+jqj+" Aqs - ~j-s (4.1.3)
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where ac- qAqs and 1, q~tAq. It is important to note that the vectors

(qI,q 2, ,q,- 2) are not needed in equation 4.1.3 . This defines one step of the Lanczos

algorithm. The normalization of r, results in qs,,. It is easy to show, by looking at q tr ,

that Pj+, - urjJJ.

The special choice of the base vectors for the subspace has an additional advantage.

The projection of A onto this subspace is a tridiagonal matrix, T.

32 a 2 (3

T) QTAQ, - P33 (4.1.4)

P3, aj]

where the q vectors form the columns of the matrix Qs, Qj = (qlq 2, qj).

This fact was realized soon after Lanczos introduced his method and the algorithm was put

to use as a process for the orthogonal transformation of a matrix to tridiagonal form.

Despite its additional attractions, the Lanczos process gave way to Givens' method in 1954

and later to Householder's method in 1958.

The relationships that define the Lanczos algorithm can now be summarized in the

following three equations.

QTQ - is (4.1.5.a)

AQj - QjT, - rJeJT  (4.1.5.b)

Qfrj - 0 (4.1.5.c)

where e, is the j-th column of the jxj identity matrix 1j.

Setting qo - 0 and using ro as the starting vector, the Lanczos algorithm can then be

described as

Given ro, set 3 - Ilroll
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For j -1,2, • • repeat

(I) -

(2) uj - Aqj

(3) rj - uj - OU-,

(4) aj - qjrj

(5) rj - rj - ajqj

(6) B+- lIrN

At the end of a simple Lanczos step the newly computed Lanczos vector is written

into secondary storage.

4.2. The Weak Form

A weak form of equation 4.0.1 can now be constructed using equation 4.1.5 . The

approximation to the solution from the subspace can be written as

xj - Qjfj (4.2.1)

where fj is the vector in the subspace defining the approximate solution. The i-th

coefficient 0, of fj and its corresponding q, are much like the nodal parameter and its asso-

ciated shape function in the finite element discretization.

Equations 4.1.1 together with equation 4.2.1 results in

AQjfj - r0  (4.2.2)

This is an overdetermined system of equation. However a solution can be obtained using a

procedure similar to the method of weighted residqials, and an approximation can be

obtained by premultiplying this with WjT The weighting vectors Wj can be chosen in such

manners as to reduce the residual of the quantities of interest.
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WJrAQjfj - Wjr0

A Galarkin type method results when the Lanczos vectors are chosen as the weighting vec-

tors.

QfAQjfj - Qro

Tjfj - P3e01 (4.2.3)

Here e'J) is the first column of the identity matrix and the above is derived using the fact

that r0 - q L 1. The above equations possess the orthogonal characteristics of the residual

vector peculiar to Galarkin methods, that is the residual vector is kept orthogonal to the

trial vectors and therefore is "minimized". In appendix B equation 4.2.3 is also derived from

an energy consideration. This orthogonality property can be seen in the form of a mono-

tonic reduction in the potential energy of the system which is a characteristic of both the

Lanczos method and conjugate gradient algorithm. In Figure 4.1 this is shown in terms of a

simple beam problem.

4.3. Termination Criteria

In the previous section the Lanczos algorithm was viewed as a method for construct-

ing the weak form of the linear set of equations. The form of the algorithm suggests that

after every Lanczos step the number of q vectors increase by one. In exact arithmetic the

algorithm can be terminated after n steps and the tridiagonal matrix contains all the infor-

mation needed to solve the problem exactly. However, it is often sufficient to stop the

iteration at some step m < n, when the solution is close enough to the exact solution.

Using the weak form, equation 4.2.3, the solution vector

f, Io [ 1,02, • • -0 •, r (4.3.1)

can be obtained by solving the equations. The approximate solution x. can then be con-

structed directly from equation 4.2.1 . The residual vector is
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NS Ax. - ro

- AQf, - ro (4.3.2)

Setting j - i in equation 4.1.3 the following can be derived

rO - pq

- Q, (el(M 101) (4.3.3)

This together with 4.3.2 and 4.2.3 results in

S- AQ.f, - QTf

- (AQ, - Q.T,)f.

- (rer) f.

- rm.,, (4.3.4)

Therefore the residual vector is a scalar multiple of the r, vector computed at the m-th

Lanczos step. Moreover the residual norm pm is given by

-I+Pm II.II

- +(4.3.5)

Thus by computing the bottom element of the solution vector to the tridiagonal system the

residual norm can be computed using a simple multiplication, noting that 13,+t is computed

at the m-th Lanczos step. In fact it is not even necessary to compute the solution to the tri-

diagonal system, f., to obtain #.. A recurrence for updating O, from information at the

previous step can be derived by considering a QR factorization of T.. Consider first a fac-

torized form of the tridiagonal matrix at step j - i

Ts- - R)-,Us-l (4.3.6)
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where R,-, is the product of all the rotation matrices up to and including step J - I that

transforms Tj-, to the upper triangular matrix Ujrt. Then the system of equations 4.2.3,

for step j - 1, can now be written as

-Uj_lfj-_ - ie (4.3.7)

The last equation of the above can be written as

aj-14j-1 - Yj-1 (4.3.8)

Here tilde denotes all quantities that were modified by the all the previous rotations and

,-t is the bottom element that is created by these rotations. After an additional Lanczos

step the last two equations of the new system is

.- ' ",f J"0

these equations are transformed again into an upper triangular form by premultiplication of

equation 4.3.9 by the plane rotation matrix

Sj Cj

where cj - cos* j and sj - sin *j. Here *#j is the rotation angle. The result of this matrix

multiplication is

c&j-i - sjj Cj0j - sjaj #j- cjYj-

I II I- I I(4.3.10)
S,&j-I + CA/6j SA6, + cia, J , sJyj-t,

The value of the rotation angle is determined by setting the term in the lower triangular

part equal to zero. Thus

tanp - (4.3.11)aj-a
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and finally #j can be obtained by performing the first step of the bcksubstitution procem.

- sj + CJj) (4.3.12)

It should be pointed out that the rotation at this step effects the next off-diagonal term in

* Ithe tridiagonal matrix and the effect is only on the super-diagonal term which explains the

Sterm in equation 4.3.9 . The final form of the updating algorithm can be arranged as fol-

lows

tan*,J -

ij - sin* ~j + cos*poj

Am- cos#JPJ+

jj - sinJojj_l

Y-
aj

This is a very inexpensive step and therefore an attractive form of updating the bottom ele-

ment of the solution vector. The residual norm, pj can then be computed from equation

4.3.5.

Contrary to the Conjugate Gradient method it is not necessary to update an approxi-

mate solution vector at each step, but only the residual norm has to be monitored. Once pj

falls bellow the specified tolerance the Lanczos algorithm is terminated and the small m

degree tridiagonal system is solved. It is very important to note that if A is indefinite then

T, may also be indefinite and care must be taken in solving the small system. For this roe-

son a stable equation solver such as the one used in the updating procedure for the residual

norm should be used.

Finally the approximate solution x, has to be computed. It is here that the Lawco

vectors are needed again to construct x.. In the present implementation the Lancaos vec-



28

tors are put onto secondary storage as they are computed and at the end of the algorithm

they are brought back one by one to form x,..

4.4. Derivation of Conjugate Gradients Method from Lanczos Algorithm

The conjugate gradients method may be developed directly from the Lanczos process.

This will demonstrate the limitation of this method. The aim is to obtain a procedure for

updating of the solution vector xj without retaining all the Lanczos vectors.

Consider first the case where A is positive definite, then the resulting tridiagonal

matrix will also be positive definite and hence its cholesky factorization exists.

Tj - LjLj (4.4.1)

Here Lj is a lower bidiagonal matrix with positive diagonal terms.

81
A2 82

Lj - IA3 . (4.4.2)

8j_

The main obstacle to updating xj is the fact that the solution vector fj to equation

4.2.3 changes fully after each Lanczos step and therefor Qjfj can not be simply accumu-

lated recursively. This difficulty can be overcome by defining

8J - LJf, (4.4.3)

and

Pj- QjLJ" (4.4.4)

The vectors in Pj are the conjugate vectors. Then the approximation xj becomes

xJ - Pig) (4.4.6)

Further, the weak form equation now becomes
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Ljgj - (4.4.7)

It is apparent from the bidiagonal structure of Lj, equation 4.4.2, the gj can be updated

very easily since the solution of equation 4.4.7 is obtained by a simple forward reduction.

Therefor g8+l can be written in terms of 8j as

8j+1 " (4.4.8)
17)j+11

where

71j+l - -isj+17)j/8j+l (4.4.9)

Thus the approximation xj+l can obtained from xj using equation 4.4.6 in arranged in the

following form

Zj~t - Ij + 7?j+IPJ+l (4.4.10)

and finally the p-vectors can be obtained from their definition. Thus

-1 8j ' (4j+i - J+Pj) (4.4.11)

This is equivalent to the method of conjugate gradients. The approach here is compu-

tationally a little different, but the role of the cholesky decomposition becomes apparent,

with the necessary requirement that A be positive definite to ensure numerical stability.

If A is an indefinite symmetric matrix, the algorithm may still be carried out, with some

success, but due to instability it can no longer be numerically reliable.

4.5. Selective Orthagonallzaln

A detailed account of the behaviour of the Lanczos algorithm in the presence of

roundoff and of selective orthosonalization is available in Parlett 1181. Therefore in this

section only the basic facts about selective orthogonalization will be presented.



30

Let a be the smallest number in the computer such that 1 + 4 > 1. This is known as

the unit roundoff error. The basic equations 4.1.5.a and 4.1.5.c are now perturbed by

roundoff. Although for each j 4.1.5.b is only slightly perturbed, the relations 4.1.5.a and

4.1.5.c completely fail after a certain number of steps depending on e and on A. The Lanc-

zos vectors, which are orthogonal in exact arithmetic, not only loose their orthogonality,

but even become linearly dependent.

For a long time, as a remedy against this loss of orthogonality, it was suggested to

reorthogonalize each new qj against all previous Lanczos vectors, which is of course very

expensive. The results of Paige 1151 gave some better insight in the way orthogonality is

lost, and provide the theoretical basis for selective orthogonalization.

In order to explain Paige's results it is necessary to introduce certain quantities which

are not of direct interest when solving a linear system of equations. Let OP) be the eigen-

values and s, be the corresponding normalized eigenvectors of Tj

TAP - spe )  i - 1,...,j . (4.5.1)

From these one can compute the Ritz vectors y pby

Y -(j QJs, W (4.5.2)

These quantities change at each Lanczos step. In subsequent discussions where there is no

confusion possible the superscripts will be dropped. The pairs (0P),YQ)) i-1 .... , are

approximate eigenpairs of A. The quality of this approximation can be determined by con-

sidering the residual lIAy, - y,0,Ij. Applying (4.5.2) one finds that, to within roundoff,
P.

IIAy, - y,9,ll , j, + lEljfl (4.S.3)

where Ej is an error matrix andj, -P-,j.js, and si, ers,, i.e., the bottom element of

the corresponding eigenvector of Tj. The pj, play an important role in the process of selec-

tive orthogonalization.
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Now everything is ready to state one of the most important consequences of Paile's

work, which can be summarized as follows:

Loss of orthogonality among the Lanczos vectors is equivalent to the convergence of

a Ritz pair.

In other words, if one of the j, becomes small, the corresponding Ritz pair converges to

an eigenpair of A and the Lanczos vector qj+j loses its orthogonality to q1 , • q-2. But
more is known about the way qj+l behaves, it is tilted towards yP) while it is retaining its

previous level of orthogonality to all the other Ritz vectors, y(J),k d i. In order to main-

tain a certain level of orthogonality it is therefore only necessary to orthogonalize the new

q,+,, or equivalently the unnormalized r1 against y,) when the 3/, become smaller than

some threshold. So first compute r'j (compare 4.1.3) by

r'j ! Aq. - qjaj - qj-~j (4.5.4)

as usual, then check if any ,gj, is small. If so then compute the corresponding y,() and

orthogonalize r'j against it obtaining

rj E-- r') - y, )f (s) (4.5.5)

where

Q) = Y (4.5.6)
Ily, U)II

This requires the formation of y, - Qjs,. The payoff for the expensive calculation comes

later when subsequent Lanczos vectors, say qj+1s and qj+3o need to be orthogonalized

against y,, since a certain number p of Ritz vectors are also put in secondary storage and

need not be formed again. The question of how many Ritz vectors to keep, and whether to

keep them in core in case the optimal number is small is still under investiption.

Finally it should be mentioned that the threshold for which a Pj, is considered to be

small is set to be f'/llTsII in the present implementation. This choice was baed on the
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computational experience for the eigenvalue problem [20!. An analysis in (201 shows that

this guarantees a certain level of orthogonality among the Lanczos vectors.

To demonstrate the loss of orthogonality, in Figure 4.2, the variation in the residual norm

is plotted for the simple Lanczos process when no action is taken to maintain orthogonality

and for the case when selective orthogonalization is performed to maintain a level of ortho-

gonality among the Lanczos vectors. The conjugate gradient method and other methodsI
.4 based on the Krylov vectors also suffer this effect. It should be noted that the loss of ortho-

gonality does not stop convergence, it only delays it.

4.6. Lanczos with Selective Ortheonalization

The final form of the Lanczos algorithm which maintains a certain level of ortho-

gonality is summarized in the following table.

1. Loop: for j = 1,2,•

1.1 Take a simple Lanczos step

1.2 Update residual norm pj

1.3 Check: if p, < tolerance end the loop

1.4 Update the eigenvalues of Tj

1.5 Compute Pj, - Pj+lsj,

1.6 Check: if/Pj, < -/IITIjl

then compute the i-th eigen vector and orthogonalize

2. Solve Tjf, - el8

3. Assemble solution: xj - Qjfj

The above formulation requires a total of 5 n-vectors and 10 j-vectors workspace.

This includes two n-vectors containing the right hand side and t,,. nitial guess, two n-

vectors for ry and qj and a n-vector for use in construction of Ritz vectors.
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4.7. Selectlve Reerthagenalizatlon

The procedure described in the previous section is not the only way of maintaining

orthogonality among the Lanczos vectors. Recently H. Simon [221 has proposed an alterna-

tive technique based on a simple recursion formula. This recursion is derived as follows.

Define

,j - q qj (4.7.1)

and multiplying equation 4.1.3 by qTand using the above definition we get

p2 q,rAqj - Ujajw + Pjw'ij-I + Pj+lWi,j+i (4.7.1.a)

a similar equation can be obtained when the same steps are applied to the i-th Lanczos

step.

qjAqi " alwj + Pwj-! + Pj+ntaj+j (4.7.1.b)

subtracting the above two relations to eliminate the terms involving A results in the recur-

sion

n- ,+ljn,,+n + (a - )w, + BoJj.,-n - (4.7.3)

This recursion holds for j - 2,3, • • and 1 4 i < j-1. To start the three step recursion it

is necessary to assume that

- j - 1,2, • • • (4.7.4.a)

and

S- e I - 2,3, • •. (4.7.4.b)

Using the above recursion the loss of orthogonality can be monitored during the Lanczos

process simply by looking at the magnitude of wjj. Whenever Ij.1 is larger than the

threshold value, I/ tIT, I, orthogonality is considered to be lost against q1 and reorthoonIal-

ization must be performed. Lanczos algorithm with selective reorthogonalization then

becomes:
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1. Loop: for j -1,2,

1.1 Take a simple Lanczos step

1.2 Update residual norm p,

1.3 Check: if p, < tolerance end the loop

1.4 Update (",j

1.5 Check: if w,., >/ -ITjIi

then orthogonalize q,+, against previous Lanczos vectors.

2. Solve Tf, - e/i 1

3. Assemble solution: xj - Qjfj

This algorithm has a number of desirable advantages over the previous approach.

(i) The implementation of this recursion is very easy and the resulting code is consider-

ably simpler.

(ii) This approach requires less storage space.

(iii) There is no need for computing the eigenvalues and eigenvectors of the tridiagonal

system.

Initial experiments with the two approaches indicate that both methods flag the loss of

orthogonality at the same step. Therefore due to the above advantages the selective

reorthogonalization technique is a better way of maintaining orthogonality for purpose of

equation solving.

4.8. Starting Vector

The choice of a good starting vector can reduce the number of Lanczos steps the algo-

rithm takes to converge to the solution. In fact if the true solution is on hand the Lanczos

algorithm terminates after one step. However it is not often that one has the exact solution

or even a good approximation. Nevertheless the question of starting vectors still remains.

Consider the extreme case where the right hand side is an eigenvector. Then any starting
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vector other than t£eru o.: the rngft hand side will take more than one step to converge,

whereas, a zero starting vector will take exactly one step to obtain th, true solution. This

can be seen by performing ih- algorithm on the equation Ax -z,, where zi is the i-th

eigenvector with corresponding eigen value A, Then

Setting q,,

r0 - z, an~d B3 I

(0) q, - rj

(2) u A Ac~~l

u? t C - A7

and the residual norm wdi te zet..

* r In general (tic right hand side has components along a certain number of eigenvectors

and Introduction 01 jwv-tai~ vc i ,.r that has components along any additional cigenveic-

tors will delay !)nv,'rgerik-e fhetefort% it can be said that unless special knowledge about

the solution is a,, Lii.01'. ,o -e t sidroing vector is the zero vector. The influence of a ran-

dom staring !h~M ' ~ norm durin~g a Lanczos run can be seen in Figure 4.3 for

the w.irnplc be-im'
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S. NEWTON-LANCZOS METHOD

k IGenerally in nonlinear structural analysis, the solution to the nonlinear equations is

required at a number of load levels to generate a complete equilibrium history. The BFGS

method described in section 3.3 attempts to make use of the information at a previous

iterate, by updating the factorization of the tangent matrix, to find the next solution. This

updating procedure imposes a limitation on the solution algorithm. That is:

The BFGS can not be applied to nonlinear problems where the tangent matrix

becomes indefinite during the iteration process.

* The object of the BFGS algorithm was to reduce the overall number of matrix factoriza-

tions but this could only be achieved at the cost of limiting #ie class of problems for which

the method can be useful

In addition to the short comings of Newton type methods described in section 3, all

these methods including Newton's method have the following limitations.

(I) These methods are not globally convergent, i.e not all starting vectors converge to the

solution.

(2) The algorithm can not be applied to the cases when the tangent matrix becomes

singular at some x

Here global convergence means that if f(x) - 0 has a unique solution then all starting vec-

tors converge to this solution

The object of the proposed algorithm is

() Remove the above two restrictions.

(i) Reduce the number of matrix factorization.

5.1. Description of the Algorithm

The Newton-Lanczos algorithm is based on the simple idea that so long as the approx-

imate solution is far from the exact solution, it is not necessary to solve the linearized



4
40

problem exactly, but only a modest level of accuracy is sufficient.

The algorithm consists of choosing an initial guess x0 and repeating the following steps for

k 0,1,2, , until convergence is achieved:

(1) given Xk compute f(x)

(2) compute the tangent matrix Ak

-' IIAkdk + f(xk)II
(3) find some dk such that + 1 k

(4) compute Sk from a line search

(5) update x&~l - xk, + skdk

(6) test for convergence and terminate if converged

Here %, is some parameter such that 71k < 1. The only difference between this algorithm

and Newton's method is in step 3. At this step the Lanczos algorithm as described in sec-

lion 4 is used to obtain dk and q, is the specified solution tolerance for the Lanczos algo-

rithm.

It is evident from the description of the algorithm that if A, is singular at some step

k then the process need not be terminated as long as a dk can be found that can achieve

the required tolerance. Under this circumstance it is desirable to have small components of

the eigenvectors corresponding to the zero eigenvalues along d,. The behavior of the

Lanczos algorithm is such that the process takes close to n steps, where n is the number of

unknowns, before it introduces any component of these eigenvectors into the solution vec-

tor. The approximate solution is obtained from a linear combinations of the Krylov vectors

and it is the matrix-vector multiplications that annihilates components of the eigenvectors

corresponding to zero eigenvalue. Therefore, it is possible to obtain an approximate solu-

lion without introducing large components of the undesirable eigenvectors.

The cost of slep 3 can be reduced by obtaining a good initial guess to the solution of

the new system. This can be done by solving the weak form of the linearized equation at a
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previous step i,

Ts ,lgs - h s

with the appropriate right hand side. The projection of the residual vector, f(xk), on the

Lanczos vectors of the previous step is identically this right hand side, That is

-j Q(If(Xk)

5.2. Convergence of Newton-Lanczos

Newton-Lanczos algorithm has very attractive convergence properties. The solution

part of the algorithm can be rearranged to get

"IIidA + f(xk)II < 17kllf(Xk)ll (5.2.1)

The convergence of Newton-Lanczos method can be proved provided the following

assumptions hold.

(a) The solution x to f(x ) is unique.

(b) The Jacobian matrix exists.

(c) r(x') is nonsingular.

The Taylor expansion about Xk can be written as

f(x,+I) - f(xk) + Akdk + e(d,) (5.2.2)

where e(dk) includes all the higher order terms in d,. Hence

IIf(xA+,)1 < IIf(x,) + AkdkII + Ile(dk)It (5.2.3)

Using equation 5.2.1 this can be modified to

Ilf(x,+,)Bl < IkJf(xk)JJ + Ue(dk)UJ (5.2.4)

At this stage there are two possible cases that need be considered:

( i) impllfixw)ll i< JJe(dII
This implies that Ilf(xk,)Il < 21le(dk)II - O(1dlld ~z which in turn implies at least
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(2) s ;:ineqality can be saeda an equality of the form

110 1 lkIlf(Ik)h (5.2.5)

where i is a positive scalar such that t < 1, then equation 5.2.4 can be written as

where -y - (t+ )i is a scalar. Choosing such that 1Ik < ,qm <V' <1I for

all values of k Then

liMf Old - 0 (5.2.7)

These results show that the algorithm is at least linearly convergent,i.e

111k11 - X*1 14 a 111k - X*11 a < 1 (5.2.8)

It can also be observed directly from the algorithm that by setting 71k C , the computer

precision, the algorithm will achieve a quadratic rate of convergence.

In general the rate of convergence is superlinear.

Iixk+I - x*1i 14al - X*1(q)(5.2.9)

where 1 4 9 (9~ k) <, 2 and lirnq (71) - 2. The superlinear rate of convergence can be

guaranteed by choosing 71 k such that 'k - 0 as z k - zx. This can be achieved very simply

by akig 'k dpenenton lfx) . In the present implementation this dependence was

chosen as

based on some computational experiments.
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5.3. Preconditioning of The Linear Equations

The use of preconditioning of the linear system of equations can often speed up con-

vergence of the Lanczos algorithm considerably. The number of Lanczos steps required to

reduce the residual norm by a factor 71 depends, in general, on the distribution of the

eigenvalues of A. An upper bound, p, to this number can be obtained from following rela-

tion

7 = + (5.3.1)

where K is the condition number of A, K - ?., 1 . This upper bound is too crude to have

any practical use for estimating the number of Lanczos steps but it can be seen that when

the condition number is unity Lanczos algorithm requires only one step to obtain the exact

solution. The equation 4.).1 can now be modified to

C-IACT - (5.3.2)
where

S- C x (5.3.3)

and

i - C-Iro (5.3.4)

where C is any matrix with an inverse that can be computed easily such as a triangular
matrix. The object now is to solve 5.3.2 . The number of Lanczos steps can be reduced sub-

stantially by choosing C in such a way as to reduce the condition number of the product

matrix of equation 5.3.2.

The present implementation of the Newton-Lanczos algorithm uses the Cholesky fac-

tor of the tangent matrix at some previous step for C. In this way the information is passed

on from on iterate to the next and therefore reduces the number of factorzations. How.

ever, factorizations can be eliminated completely if a good approximation to the precondi.

tioning matrix C can be obtained. Moreover, the preconditioning can be updated from one
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step to the next using an updating procedure similer to the one used for the BFGS algo-

rithm.

5.4. Numerical Results

Example I

This example, figure 5.1, is a simple truss structure with a peculiar property. The ini-

tial tangent matrix is singular. The purpose of this example is to demonstrate the global

convergence of the Newton-Lanczos algorithm. A linearly elastic, large displacement truss

element was used to model the structure which has a total of 8 degrees of freedom.

Using a zero starting solution, all the methods described in section 3, including

Newton's method, diverged immediately after the initial iteration when applied to this prob-

lem. This is due to the fact that a direct equation solver is used to solve the linearized

problem and since the tangent matrix is singular the solution vector will be an eigenvector

corresponding to a zero eigenvalue with a large magnitude, This is like performing one step

of inverse iteration method with a singular matrix which always converge to the eigenvector

with smallest eigenvalue. No line search was used for Newton's method or Modified New-

ton method, however the BFGS algorithm which has line search also failed to converge.

Newton-Lanczos algorithm, with no preconditioning, when applied to this problem

converged to the correct solution. However the convergence was only linear because of the

singularity. The convergence rate improved as the approximate solution moved away from

the singularity. Despite the low rate of convergence, the fact that the correct solution was

obtained shows that the domain of attraction of Newton-Lanczos is larger than that of

Newton's method. The load-displacement curve of figure 5.2 gives an indication of the

stiffening behavior of the structure.

Example II



For a second example, we consider the shear loading of a block of rubber, as shown

in Figure 5.3. The nonlinear elastic behavior of the rubber was modeled using a

simplification of the general Rivlin model, originally proposed by Mooney [4]. The non-

linearities are present throughout the loading process. A nine node plane stress Lagrangian

element, with penalty formulation 1211, was used to discretize the problem to a total of 60

degrees of freedom.

The four basic methods were tested on this problem and the results are tabulated in

Table 5.1. The convergence of the BFGS quasi-Newton method was disappointing since it

required I I iterations to converge at each step while the modified Newton which has only a

linear convergence rate, required 14 iteration to converge.

The total number of factorizations required by each method is listed below.

Newton 9

BFGS 3

Modified Newton 3

Newton-Lanczos 1

The control of the rate of convergence for Newton-Lnaczos can be seen, Figure 5.4,

when the method was used, without any preconditioning, to solve this problem with

different '10 values.

Example III

As a final example a parabolic beam illustrated in Figure 5.5 was modeled using 4

node, plane stress, quadrilateral elements. The nonlinearities enter the problem when the

beam comes into contact with a rigid boundary. The contact condition is enforced by

Lagrange multiplier constraints on those nodes indicating penetration and/or compressive

contact force. The contact problem is of the same type as the problem of constrained

optimization.
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Both The BFGS and the Modified Newton method failed to converge when applied to

I this problem. This is because the tangent matrix becomes indefinite during the iteration

process and the BFGS updates are incapable of accounting for the indefiniteness introduced

by the contact elements.

The structure has stiffening characteristic during the loading process and a softening

* characteristic during the unloading phase. The total number of degrees of freedom is 870.

The cost comparisons for Newton's method and Newton-Lanczos method are tabulated in

Table 5.2. The total number of factorization required by each method is as follows:

Newton 13

Newton-Lanczos 2

5.5. Closure

The motivation for the development of quasi-Newton methods was reduction in the

overall cost of the analysis, using fewer factorization steps. However, the use of quasi-

Newton methods to solve nonlinear finite element equations has been restricted to prob-

lems with positive definite Jacobians.

The Newton-Lanczos algorithm described herein not only requires less factorization

steps than either the quasi-Newton method or the modified Newton method but also has

the following advantages over its rivals:

(1) The method is globally convergent.

(2) The rate of convergence can be controlled through a specified tolerance.

(3) The algorithm does not terminate in the case of a near singular Jacobian matrix.

(4) The algorithm can be applied to indefinite systems.

In the present implementation of Newton-Lanczos, the Jacobian matrix is decom-

posed into its Cholesky factors in order to get a preconditioning matrix for the Lanczos

algorithm. This factorization is avoided if an effective preconditioning matrix can be
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constructed by other means, resulting in an additional reduction in the overall storage

requirement of the algorithm. Further, the preconditioning matrix can then be updated

the subsequent iterations.
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Figure 5. 1 Properties of the Truss Structure used in Example I.
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Figure 5.2 Load-Displacement Characteristic of Example I.
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Load No. of No. of No. of No. of
level Method Iteration LU Factor. Function Matrix-Vector

Evaluations op.

Newton 3 3 4 3

Mod. Newton 14 1 15 14

I BFGS I 1 1 12 11

N-L 10 - 4 1 5 25

N-L -o" 10 -5  3 1 4 15

Newton 3 3 4 3

Mod. Newton 14 1 15 14

2 BFGS 11 1 12 11

N-L ,o- 10 -3  3 0 4 18

N-L no- 10 -l 3 0 4 24

Newton 3 3 4 3

Mod. Newton 14 1 15 14

3 BFGS 1 1 12 11

N-L 0 - 10-' 3 0 4 18

N-L v0- 10 - 3 0 4 32

Table 5.1 Cost comparisons of different methods using

Example 11 (Rubber Block).
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Figure 5.4 Effect of -o on the Rate of Convergence of the

Newton-Lanczos aliorithm.
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Newton-Lanczos Method Newton's Method
qO _ 10-7

Load No. of No. of No. of C.P.U. No. of C.P.U.
(KN) Iterat. LU Lanczos time LU timq

Factor. steps (sec.) Factor. (sec.)

0.4 3 2 6 64.01 3 67.22

0.6 2 0 3 18.11 2 44.43

0.9 2 0 7 28.29 2 43.69

0.6 2 0 8 33.18 2 44.45

0.4 2 0 4 22.16 2 44.45

0.0 2 0 6 31.09 2 44.32

Table 5.2 Cost comprisons of Newton-Lancz and Newton's Method

using Example III (contact problem).
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APPENDIX A

Orthegonalizatlon of the Krylov Vectors

Consider the set of vectors (r0 AroA2r , . AJ-re). Assume for the moment that a

set of orthonormal vectors, (q1,q 2 " ,q), are produced by successivly orthogonalizing

A'ro to all the previous vectors, all vectors Akro for k < i, and then normalizing the

resulting vector to obtain the next orthonormal vector qj+,. Repeating this procedure for

i - 1,2, -I defines the Gram-Schmidt method.

At some step i j-1 we have

-A Aro - 1:'Yk, (AI)
k-1

where yk -q TA'ro and q,+, - but A-1 0 e span(qj,q 2, -,q). This can be rewrit-

ten as

SA'- Iro - V'a Wq A)

k-I

where ik - qkA'-tro Equations Al and A2 can now be combined to give

I I

I - I&,kAqk - .kqk (A3)
k-I k-I

and in turn Aq,-t e span(q,q2, • • ,q,). Therefore

,, - Aq, - t"kqk (A4)
k-I

where V, - qlAq, and now q, - -

At some step j, the orthonormalization proccess described by equation A4 must be

performed for the vector Aq). However, consider the case when we orthogonalize this vec-

tor only to the previous two vectors, qj and qj.-.. Then we get
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r- Aqs - u A l- j. (AS)

where aj - qJTAqj and p" q-nA qj. The orthogonality of rj to the remaining vectors can

now be checked by forming qTrj for i <i-1

q~rj - qT (Aqj - ajqj - Pjqj-)

- qrAqj (A6)

- qJAq,

This is derived using the orthogonality condition of the q vectors and the symmetry pro-

perty of A. This eqution together with equation A4 leads to the following:

qdrj - qj(, q, + - 0
k-I

This results shows that rj is orthogonal to all the previous vectors qj i- 1,2,... ,j.

Therefore to generate the orthonormal bases, at each step Aqj need only be orthogonalized

aqainst qj and qj-t.
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I iAPPENDIX B

Minium Potantlal Energy over Krylov Space

The potantial energy of a linear system is given by

iT
E"1(x) - Vi2xTAx z (Bi)

where the El denotes the energy in the n-dimentional space. The minimum or this scalar

function occurs when

VEI(x)-Ax-b-O (B2)

When the variables are restricted to the space of Lanczos vectors they are redefined as

x - Qjf,

and

The potantial energy now becomes

EJ(f) - V2fjTiAQjfj -fjT~jejp

- fjffj - fj( Pej) (33)

The minimum of the potantial energy, restricted to the Krylov space, now occurs when

VEJ(fj) - Tjfj -01ie - 0 (84)

ii

*
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